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One day....

NAME
DATE OF BIRTH
SEX ted

| BRCA1 Q1756fs*74 |

| PDGFRB amplification |

| FGF12 amplification |

Mutations identified

MEDICAL RECORD #
PHYSICIAN
ORDERING PHYSICIAN
MEDICAL FACILITY
ADDITIONAL RECIPIENT

MEDICAL FACILITY 1D
PATHOLOGIST

SPECIMEN SITE
SPECIMEN ID
SPECIMEN TYPE ¢

DATE OF COLLECTION
SPECIMEN RECEIVED Not

Loss of Heterozygosity score - 211 %

Targeted therapy: “one gene, one target”
Majority of patients remain untreated by targeted therapies

Can Al help us identify the right drug for such cancer patients?

10 Trials seep. 1

L] NDATIONONE"CDx redacted Ovary serous carcinoma Invalid date
redacted 000000
ABOUT THeE TRST
PATIENT Biomarker Findings
DISEASE Loss of Heterozygosity score - 21.1 %

Microsatellite status - MS-Stable
Tumor Mutational Burden - 6 Muts/Mb

Genomic Findings

For  complete list of the genes assayed. please refer to the Appendix
BRCA1Q1756fs*74

PDGFRB amplification - equivocal”

TP53 R273C

FGF12 amplification - equivocal*

1Disease relevant genes with no reportable alterations: BRCA2

1 See About thedest in appendix fordetalis.

& Therapies with Clinical Benefit 18 Clinical Trials
O/ Therapies with Lack of Response

MARKE! THERAPIES WITH CLINICAL BENEFIT THERAPIES WITH CLINICAL BENEFIT
Ll e (IN PATIENT'S TUMOR TYPE) (IN OTHER TUMOR TYPE)

Niraparib [24] Talazoparib
Olaparib [22]
Rucaparib [2a]

Microsatellite status - ms-Stable

No therapies or clinical trials. see Biomarker Findings section

Tumor Mutational Burden - 6 Muts/Mb

No therapies or clinical trials. see Biomarker Findings section

THERAPIES WITH CLINICAL BENEFIT THERAPIES WITH CLINICAL BENEFIT
(IN PATIENT'S TUMOR TYPE) (IN OTHER TUMOR TYPE)

1 Trial see p. 18

BRCAT1 - Q1756fs*74 Olaparib (I Talazoparib
Niraparib [2a]
10 Trials seep.id Rucaparib 2]
PDGFRB - amplification - aguivocal none Sorafenib [2a]
2 Trials seep. 17 Sunitinib
TPS3 - R273C none none

Sample Preparation: 1
Sample Analysis: |




S NORMAL CELL AND CANCER CELL DEVELOPMENT

NORMAL CELL DEVELOPMENT
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CANCER

Cancer is a genetic disease, i.e., it is caused by changes to genes (mutations)
Cancer is a leading cause of death worldwide (one-in-six deaths, 2020)

DNA Structure
af €3 { < —Histone . ) )
S558_ o0 o Each cell in our body contains 23 pairs of chromosomes

l

— J
Nucleosom:\\\

A 2\ Cene Each chromosome is a sequence of “base pairs” , bases
are A, C, G T

< 74 .
= Gene: subsequence of the chromosome which has
S oo F \ —_— functional importance

~20,000 genes have been identified

Nucleotide
base pairs:

Nucleus . Guanine

Cytosine https://www.cancer.gov/about-cancer/understanding/what-is-cancer
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Adenine ;
B Thymine *—#J _‘/
, B

https://www.who.int/news-room/fact-sheets/detail/cancer



https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.who.int/news-room/fact-sheets/detail/cancer

CANCER TREATMENT

» Treatment remains challenging

« Complex disease: Every cancer has an individual set of mutations

» A drug that works for one cancer patient, might have absolutely no effect on another

» Treatment must be tailored to each patient: personalized therapy

® © ©
Cancer Tumour
Patients : Analysis, .
Sequencing Modeling I w
Personalized
Therapy

https://www.worldwidecancerresearch.org/news-opinion/2021/march/why-havent-we-cured-cancer-yet/
https://en.wikipedia.org/wiki/Personalized medicine



https://www.worldwidecancerresearch.org/news-opinion/2021/march/why-havent-we-cured-cancer-yet/
https://en.wikipedia.org/wiki/Personalized_medicine
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Challenge in precision oncology
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Clinical trials intractable!

Icons from Flaticon
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CANCER GENOMICS DATA

The Cancer Genome Atlas (TCGA)

Since 2006
> 11,000 patients
2.5 PetaBytes of Data

33 cancer types

» Many similar data collection efforts to
understand cancer

Glioblastoma (GBM) . . .
i Omics characterizations

Lung adenocarcinoma
(LUAD)

Breast (BRCA) < 22
Ovarian (OV) = = 3 S 5
Kidney (KIRC) ¢ _ -~ - TR s Mutation

3 !
Endometrial (UCEC) _}
Thematic
pathwayi/
\‘x' v ! ,‘ | -
\ ®, /
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Y, 4

. Copy number

Gene expression

Platforms

DNA methylation
MicroRNA

RPPA

Clinical data

Weinstein, J. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 2013




REPRESENTING GENOMIC DATA

Raw sequence (rarely used) .ACCTTTCGGCCGGACCCCC...

Mutation Vector Genes of interest: | 61 | 62 |63 |64 |65 |66 |67 | G8 | Go9

Binary indicator: 1 - mutation in gene, 0 = no mutation

Gene Expression Vector Genes of interest: | ©1 | ©2 | &3 | & |© [ | | |
6 2.1 & 0 0 0 0 1 0
Sequence of Mutations G1: R273C, G1: S1372L, G2: L145V ...

In gene G1, at location 273 a mutation changed R to C in the protein



DRUG RESPONSE MEASUREMENTS

1. Response Evaluation Criteria In Solid Tumors (RECIST)

» Standard way to measure how well a cancer patient responds to treatment.

RECIST

CR Complete Response
Good response (label +1) 1

PR Partial Response

W

PD Progressive Disease
SD  Stable Disease

Bad response (label -1) -

2. Progression-free Survival (PFS)

» The length of time during and after the treatment (days/months/years), that a
patient lives without the cancer getting worse.



DRUG RESPONSE PREDICTION (DRP)

== > Given:

* a patient’s genomic profile and

* adrug

Targeted therapy: “one gene, one target”

Majority of patients remain untreated by targeted therapies lj}f - - > Wil I the res po n Se Of th e patie nt to
Can Al help us identify the right drug for such cancer patients? the d ru g be g OOd ?

¥ s %
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X: Patient's genomic data (e.g., mutation vector or gene expression)
Y: RECIST value after administering drug d

Y ~ f4(X) = binary classification

Challenge
« X:abundant, but...
* Y: extremely limited for any drug d

Why?

 Each patient is given one/few drugs, counterfactual unknown



CELL LINES: A RELATED “DOMAIN"
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Re
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Extracted cancer cells\' Cell lines
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Patient o -
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Response j

» Extract cancer cells and clone them in lab (living cells, continue growing)

» Ensures each cell has same genomic data (X)

» Administer multiple drugs on cell lines, measure response Y



DRUG RESPONSE MEASUREMENT IN CELL LINES

Area under the Dose Response Curve (AUDRC)
Real-valued [0,1]

1.0

« Administer progressively increasing concentration (X-axis) \
of drug and measure the amount of cancer cells (Y-axis)
killed: Dose Response Curve (DRC)

0.8
|

0.6
|

» Lesser concentration kills more cells - more effective drug
—>Lower AUDRC

Relative viability

0.4

» E.g.efficacy of lll > 1 > I

0.2

0.0
|

2 Vis, D. J. et al. Multilevel models improve precision and speed of IC50 estimates. Pharmacogenomics 2016.
Concentration, 2-fold dilution steps, step=9 max test conc




CELL LINES: A RELATED “DOMAIN"

<
X
Extracted cancer cells Cell lines

. o "'>+
= + *—— | Response
Patient o -
® Zf or " Response
ﬂ = | Response Clones —
L4 -

K N > Response j

» Extract cancer cells and clone them in lab (living cells, continue growing)
» Ensures each cell has same genomic data (X)

» Administer multiple drugs on cell lines, measure response Y

» Can a Drug Response Prediction model on celllines Y ~ f;(X) work for patients?



CELL LINES: A RELATED “DOMAIN"

Patient

ﬂ s " Response

Extracted cancer ceIIs\'

Clones —

Cell lines

~

Response

Response

+ »

Response j

» Extract cancer cells and clone them in lab (living cells, continue growing)
» Ensures each cell has same genomic data (X)

» Administer multiple drugs on cell lines, measure response Y

» Can a Drug Response Prediction model on celllines Y ~ f;(X) work for patients?

No: drug responses differ across patients and cell lines
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INPUT SPACE
DISCREPANCY

Sample acquisition

Sequencing

Mutation profile

Distribution of Mutations

Patient Cell line
OUTPUT SPACE ®
DISCREPANCY &«

&

<
0

% ¢
‘\»

Targeted Treatment

Measurement of
response

o
b;o

Responses Responder

e
X

Non-Responder

RECIST

Binary Classification

Regression



PROBLEM STATEMENT

» QGiven:

Profile P(XC) + P(Xt)
Cell Lines Y4 € R (AADRC) N, labeled
fA# e

where

Patients X, Y2 € {0,1} (RECIST) N, labeled
N; unlabeled

ch =~ fcd (Xc)r Ytd =~ ftd (Xt)

» Infer: Drug Response Prediction model
f& Y~ Xy, Vdrugd € {dy,dy,...d,}




Method Clinical translation requirements Transfer learning requirements

PRECISE (2019) ? ? ? ? Input Output ?

i (1] i (1]
AITL (2020) discrepancy discrepancy
TCRP (2021)

Velodrome (2021)

TRANSACT (2021)

TUGDA (2021)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). “AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics,”
Bioinformatics (36:Supplement_1), pp. i380-i388.



DRP Requirements

From prior DRP literature
* Handle input discrepancy
* Handle output discrepancy Transfer learning dimensions

* Model patient mutation heterogeneity




Method Clinical translation requirements Transfer learning requirements

PRECISE (2019) ? ? ? ? Input Output Model patient

i (1] i 11 | het it
AITL (2020) discrepancy discrepancy [2]e erogeneity
TCRP (2021)

Velodrome (2021)

TRANSACT (2021)

TUGDA (2021)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). “AlTL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics,”
Bioinformatics (36:Supplement_1), pp. i380-i388.
[2] Zhai, J., & Liu, H. (2024). Cross-domain feature disentanglement for interpretable modeling of tumor microenvironmentimpact on drug response. IEEE Journal of Biomedical and Health Informatics.




Bridging the Al translational gap

* Clinical usability

* Use of clinically available input data
(clinical sequencing profiles)!]

* Clinical utility
* Use of clinically meaningful outcomes
* Time/cost savings

CLINICAL
IMPACT

MODEL
DEVELOPMENT

* Clinical validity

* Evaluation in real-world situations €Al TRANSLATIONAL GAP __—
(clinical trials)

7

[2] Kann, B. H., Hosny, A., & Aerts, H. J. (2021). Artificial intelligence for clinical
oncology. Cancer Cell, 39(7), 916-927

[1]1 ELNaga, I, Karolak, A., Luo, Y., Folio, L., Tarhini, A. A., Rollison, D., & Parodi, K. (2023). Translation of Al into oncology clinical practice. Oncogene, 42(42), 3089-3097. 4



Dimensions of comparison

Consideration for Requirement for Dimension

Clinical Translation clinical translation

Clinical Usability Use of clinically Training with mutation
available input data profiles (varying length)

Clinical Utility Use of clinically Utilise all patient

meaningful outcomes response-related
information like survival

Time/cost savings Enable repurposing of
drugs already approved
for clinical use

Clinical Validity Evaluation in real-world Clinical trials for
situations validation
v After model develo;)ment L
<‘-~v-__-__il\‘l' I(ﬁN 5 | -«TION L




DRP Requirements

For clinical translation

Consideration for Dimension
Clinical Translation |« Training with mutations available
Clinical Usability Training with mutation L .- . .
orofiles (varying length) In clinical sequencing reports
Clinical Utility Utilise all patient o Modelvarying length mutations
response-related u . ] .
information like * Utilise all available auxiliary
survival J patient response information
Enable repurposing of
drugs already approved (PFS)
for et Gl USE * Predict on drugs unseen during
Clinical Validity Clinical trials for training
validation

After model development



DRP Requirements

For clinical translation

* Training with mutations available in clinical sequencing reports
* Predict on drugs unseen during training

* Model varying length mutations

* Utilise all available auxiliary patient response information (PFS)
From prior DRP literature

* Handle input discrepancy

* Handle output discrepancy

* Model patient mutation heterogeneity



Method Clinical translation requirements Transfer learning requirements

PRECISE (2019) Train with | Model Predict on Utilise Input Output Model patient
[ [ i ' 11 | di [1] -

AITL (2020) mutations | varying drugsunseen ava.llable discrepancy discrepancy [I;]eterogenelty
from length during patient

TCRP (2021) clinical mutationst®! | trainingll response
sequencin data (PFS)E

Velodrome (2021) g

TRANSACT (2021) | profilest®

TUGDA (from

i (02T clinicians)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). “AlTL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics,”
Bioinformatics (36:Supplement_1), pp. i380-i388.

[2] Zhali, J., & Liu, H. (2024). Cross-domain feature disentanglement for interpretable modeling of tumor microenvironmentimpact on drug response. |[EEE Journal of Biomedical and Health Informatics.
[3]Jayagopal, A., Xue, H., He, Z., Walsh, R. J., Hariprasannan, K. K., Tan, D. S. P., ... & Rajan, V. (2024, August). Personalised Drug Ildentifier for Cancer Treatment with Transformers using Auxiliary
Information. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 5138-5149).

[4]1Hua, Y., Dai, X., Xu, Y., Xing, G., Liu, H., Lu, T., ... & Zhang, Y. (2022). Drug repositioning: Progress and challenges in drug discovery for various diseases. European Journal of Medicinal Chemistry, 234,
114239.



Transfer Learning requirements Clinical translation requirements

Input Output Model Training with ~ Varying Use of Prediction on
discrepan discrepancy patient clinical length auxiliary drugs unseen
cy mutation mutations inputs information in training (for
heterogenei modelled (PEFS) repurposing)
ty in
downstrea
m DRP
PRECISE (2019) v
AITL (2020) v v
TCRP (2021) v
Velodrome (2021) | v
TRANSACT (2021) |V
TUGDA (2021) v
CODE-AE (2022) v
PANCDR (2024) v v
Drug2tme (2024) |V v v v

Not clinically translatable!



Transfer Learning requirements Clinical translation requirements

Method Input Output Model Training with Varying Use of auxiliary Prediction on
discrepanc discrepancy patient clinical length inputs  information drugs unseen

y mutation mutations modelled (PES) in training (for
heterogeneit repurposing)

y

PRECISE (2019)
AITL (2020)

TCRP (2021)
Velodrome (2021)
TRANSACT (2021)
TUGDA (2021)
CODE-AE (2022)
PANCDR (2024)
Drug2tme (2024)

DrulD
PREDICT-AI
GANDALF

<
<
<
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C?

Problem Identified:

o

Challenging for oncologists
to recommend treatment
for cancer patients, based
on all mutations identified
in clinical mutation profiles

G d = ?
Goal
To develop a clinically Drug Response Prediction:
translatable personalized
cancer treatment Given a patient clinical
recommendation system mutation profile and a drug,
will the patient respond well to
/ the drug?

First approach towards
predicting drug response from
clinical grade mutation profiles

CelliScience

A 4

PREDICT-AI

Utilises all available patient
response related data

KDD’24

Data augmentation approach to
handle data scarcity

ICLR’25

11




Methods



DRP Requirements

For clinical translation

* Training with mutations available in clinical sequencing reports
* Predict on drugs unseen during training

* Model varying length mutations

* Utilise all available auxiliary patient response information (PFS)
From prior DRP literature

* Handle input discrepancy

* Handle output discrepancy

* Model patient mutation heterogeneity

13



DrulD: Drug IDentifier

Jayagopal, A., Walsh, R.J., Hariprasannan, K.K., Mariappan, R., Mahapatra, D., Jaynes, P.W., Lim, D., Tan, D.S.P., Tan, T.Z., Pitt, J.J., Jeyasekharan, A.D. and Rajan, V, "A multi-task
domain-adapted model to predict chemotherapy response from mutations in recurrently altered cancer genes." iScience 28.3 (2025).

14



DRP Requirements

For clinical translation
=) - Training with mutations available in clinical sequencing reports
mm)  Predict on drugs unseen during training
* Model varying length mutations
* Utilise all available auxiliary patient response information (PFS)
From prior DRP literature
* Handle input discrepancy
=) * Handle output discrepancy
* Model patient mutation heterogeneity

15



Model Design

For clinical translation
* Training with mutations available in clinical
sequencing reports eduremen

Training with mutations available
in clinical sequencing reports

* Predict on drugs unseen during training

* Model varying length mutations Predict on drugs unseen during
* Utilise all available auxiliary patient ‘ training

response information (PFS) Handle input space discrepancy
From prior DRP literature Handle output space

* Handle input discrepancy discrepancy

* Handle output discrepancy
* Model patient mutation heterogeneity

16



Model Design

Training with mutations available  Sparse, high dimensional nature = Use VAEs, with zero inflated

in clinical sequencing reports of mutations distributions to model sparsity
and high dimensional data

17



Variational Autoencoders

* Avariational autoencoder tries to
find a latent representation z that
iIncreases the probability of
reconstructing the original input
from it. In the encoder, variational
probability Q(z]Y ) is used to
approximate the posterior P(z]Y).
Neural networks are used as
encoders and decoders to obtain
the lower dimensional loss = || x-x]|P? + KLI «N(O, ] = [|x-d(2)|]? + KL ,N(©O,1)]
representation. Invariational autoencoders, the loss function is composed of a reconstruction term (that makes the encoding-

decoding scheme efficient) and a regularisation term (that makes the latent space regular).
* Basic idea is to learn the
probability distribution

neural network

decoder

From https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

18



Zero Inflated distributions

Zero Inflated Distribution
* Used for sparse datasets.

* Has a point mass at 0, for O values and NB for ordinal values/Normal for
real.

ZINB(Y;T1,Q,0) = MA,(Y) + (1 — NB(Y; Q, ©)

1= sigmoid(Y.Wp); Q =exp(Y.Wq); 0 =exp(Y.Wp)
ry+e o U ¥

NB(Y;0,0) = =, [(0) o u)a(@ +

Parameter estimation:
2
Lre = NLL7;(Xe; T, Q,,0,) + AT,

19



NLL ZINB

* For non-zero values
—log|(1 —m)NB(x; 1, 6)]
= logl'(x+ 1) + (6 + x)log(8 + u) — xlogu — Bloghb + logI'(6)
— logl'(x + 68) — log(1 — m)

e FOor zero case

_ 5 0
—l0g T + (1 — T[) (m)

* Add regularizing term with above value
2
A

20



Model Design

Training with mutations available  Sparse, high dimensional nature = Use VAEs, with zero inflated
in clinical sequencing reports of mutations distributions to model sparsity
and high dimensional data

Predict on drugs unseen during Include drug information as a Morgan fingerprint (binary) to
training model input encode drug information

21



Model Design

Training with mutations available Sparse, high dimensional nature = Use VAEs, with zero inflated
in clinical sequencing reports of mutations distributions to model sparsity
and high dimensional data

Predict on drugs unseen during Include drug information as a Morgan fingerprint (binary) to

training model input encode drug information

Handle input space discrepancy  Model shared characteristics Learn shared embedding by
common to cell lines and aligning domain representations,

patients CORAL loss

22



CORAL loss

* Unsupervised domain adaptation loss

* Aligns source and target domains - minimizes covariance of input
feature distributions

e Useful when distributions of domains are different
Lcorar = ”CO}L}(ZC) — COV(Zp)”

cov(z) = %z (zi—2)(zi—7;)'
i=1

23



Model Design

Training with mutations available
in clinical sequencing reports

Predict on drugs unseen during
training

Handle input space discrepancy

Handle output space
discrepancy

Sparse, high dimensional nature
of mutations

Include drug information as a
model input

Model shared characteristics
common to cell lines and
patients

Model differences in responses in
both domains

Use VAEs, with zero inflated
distributions to model sparsity
and high dimensional data

Morgan fingerprint (binary) to
encode drug information

Learn shared embedding by
aligning domain representations,
CORAL loss

Use multi-task learning to model
the outputs — regression for cell
lines and classification for
patients.

Incorporate biological information available on each mutation

24



DrulD: Pretraining

* Pretraining loss is a combination of reconstruction loss and
alignment loss

Lre = NLLz;(Xe; Tle, 0, 0,) + A|IM, ||
Lkipe = —0.5 * z(l +log(o, ) — uz — a¢)
Lcorar = ||C07717(Zc) — COU(Zp)”
cov(@) = — ) (2~2) @7
Lyretraining = Lre + ngc + Lrp + Lkrpp + Lcorat

25



DrulD: MTL

* Training loss is a multi objective optimization of MSE and BCE logit
loss

Lpck
= —[yrecisr 1og(sigmoid Frecisr)) + (1 — Yrecistlog(l
— sigmoid(Yrgcyst))]

Lyse = QVavpre — Yaupre)®

Lyt = maX(AcLMSE»ApLBCE)

26



Model Training

Stage 1:
Pretraining VAEs

A\ 4

* Handles input
discrepancy

* Training on
mutation data

)

Stage 2:

Training the Multi-task
learning (MTL) model

-

Handles output

space discrepancy

Allows drug
repurposing

~

)

27
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1 E | \ \ - \
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Clinical NGS LAY : 1o\ Patient VAE ALY RECIST predictor] Predicted
report A TN WM _ ! RECIST Category
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Extract patient identifier and
set of point mutations from
report

v

For each point mutation,
obtain genomic coordinates,
HGVSc, Consequence using

TransVar

Derive ClinVar annotations
from the genomic coordinates
using filter-based Annovar
annotations

A

Group Clinical Significance
returned into 3 — pathogenic,
benign or variants of unknown
significance(VUS)

ClinVar Annotation

Derive dbNSFP categorical
annotations from the genomic
coordinates using filter-based

Annovar annotations

y

Encode “Deleterious” as 1
and “Tolerated” as 0 to obtain
a 17-dimensional binary
vector per point mutation

AnnoVar Annotation

Obtain Ensembl ID for the
gene associated with each
point mutation

A
Use GPD to identify where
each mutation lies — protein
information unit (PIU), linker
unit(LU) or non-coding
unit(NCU)

GPD Annotation

L e e e e e e e = ——— -
Mutation Clinical SIFT LRT FATHMM Row-wise mean GPD Annotation
Significanc (d-score)
e
ABL1 G259G VUS 0 0 0 0 NCU
XRCC2T194T Benign 0 0 0 0 NCU
AKT1 E17K Pathogenic 1 1 1 15/17 PIU

Variant Annotation

Point GPD ClinVar d-score
mutation annotation annotation

ABL1 G259G | NCU VUS 0

ABL1 N96S PIU VUS 0.5

ABL1 P622L PIU VUS 0

ABL1 R483W | PIU VUS 1

Gene ABL1 Gene ABL1
PIU mean 0.5 Pathogenic mean | O
PIU sum 1.5 Pathogenic sum 0
PIU max 1 Pathogenic max 0
PIU count 3 Pathogenic count | O
NCU mean 0 Benign mean 0
NCU sum 0 Benign sum 0
NCU max 0 Benign max 0
NCU count 1 Benign count 0

LU mean 0 VUS mean 0.375
LU sum 0 VUS sum 25
LU max 0 VUS max 1

LU count 0 VUS count 4

Gene level aggregation example

29




q—b Mutation 1

B o - - - - -

23-dimensional vector

\

Mutation N

23-dimensional vector

I

Gene 1

|

24-dimensional vector/gene

Gene 2

24-dimensional vector

24-dimensional vector

Gene 324

24-dimensional vector

1

7776-dimensional vector/patient

30



o | Cellline VAE | Cellline embedding
1 | Zc € RUcxu
oo | |
= I I
CellLines ! ;
719 GclXe) P(Xclze)|
Xc € Rncx k | |
I I
—— I I A A N i
| 1 )

=== Cell lines

Alignment loss

1 1
1 1
1 1 A
XP c Rnpxk I 1
Distribution of r ! Distribution of
> Q(zp|Xp) P(Xplzp)| | :
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Experiment: Data

* Cancer cell lines
« Mutation profiles: CCLE DepMap portall'!
* AUDRC labels: GDSC portal!?!

e Patients

* Pan cancer TCGA patient mutation profiles and RECIST labels: TCGA GDC
portall3]

* Only 324 genes from FoundationOne CDx report retained for use

[1] https://depmap.org/portal/data_page/?tab=allData
[2] https://www.cancerrx gene.org/ 34
[3] https://portal.gdc.cancer.gov/



https://depmap.org/portal/data_page/?tab=allData
https://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/

Experimental Settings

* Split cell line and patient data into train and test splits (80:20)
* Generate 3 different train-test splits
e TCGA test split—90

* Train model on train splits of cell lines and patients
* Cellline — TCGA dataset: 689 cell line-drug pairs, 444 patient-drug pairs

* Evaluation using AUROC and AUPRC on test splits of patients
(RECIST)

* Comparison of baselines against most recent work - CODE-AE,
TUGDA, TCRP, Velodrome
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Results: Comparison against SOTA

AUROC AUPRC
1.0{ - - CODE-AE - 0.496 1.0 1
TCRP - 0.456
—--- TUGDA - 0.469
—-= \elodrome - 0.542
0.81 —— DrulD - 0.606 0.8 1
g
e 0.6
@
:§ DrulD outperforms SOTA on mutation data
< AUROC: 6.4%
- AUPRC: 1.1% t
E-0.74
0.2 02! 1 TCRP - 0.733
--- TUGDA - 0.721
—-= Velodrome - 0.771
—— DrulD - 0.782
0.0 1 0.0 4 == Baseline - 0.744
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
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Additional experiments

* Performance comparison of mutation against gene expression (&
other data types) data from genes in clinical sequencing panels
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Does the use of clinical NGS work as well as

WES?

B Subsetl Subset?2 B Subset3
1.0 1.0
0.8 1 0.8 1
I X
O 0.6 1 0.6 1
2 s |£
z { 5
=
< 0.4 0.4 1
0.2 1 0.2 1
p > 0.05 p > 0.05
0.0 0.0

Input subset of genes Input subset of genes

Subset1: 324 genes included in FoundationOne CDx.
Subset2: 285 genes common across FoundationOne CDx, TruSight Oncology 500 and Tempus xF+ cNGS panels.

Subset3: 19,536 genes, nearly all those available from WES.
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DrulD: Comparison of input types

AUROC
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0.65 1
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0.800
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0.725 1

0.700

Input types
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DrulD: Comparison of input types

B CNV Combined CNV and Annotated Mutation I Annotated Mutation
* * *
- p = 0.01 p = 0.004 - p =0.02
0.95 1
0.8 1
0.90 1
0.7 1
} 0.85
9] I 3]
£ 061 & 0.80-
=) 2
x <
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0.5 1
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0.70 1 I
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2 { I 0.65 -
0.3 T T T 0.60 T T T
CISPLATIN PACLITAXEL 5-FLUOROURACIL CISPLATIN PACLITAXEL 5-FLUOROURACIL
Drug Drug
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Additional experiments

* Validation of DrulD on real-world data from NUH, Singapore
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DrulD: On real world datasets

True Positive Rate

1.0 1
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o
o
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0.2 1
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DrulD: On real world datasets

Colorectal cancer - AUPRC
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DrulD: On real world datasets

Ovarian cancer - AUPRC

Precision
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Additional experiments

* Comparison of DrulD against SOTA on gene expression
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DrulD: Comparison against SOTA on gene

expression

AUROC scores AUPRC scores

Drug TCRP TUGDA Velodrome CODE-AE DrulD Drug TCRP TUGDA Velodrome CODE-AE DrulD
SORAFENIB | 0.5482 +- 0.4786 +- 0.5482 +- 0.3704 +- 0.6889 +- SORAFENIB | 0.613 +- 0.086 +- 0.6333 +- 0.537 +- 0.6944 +-

0.3445 0.3203 0.3066 0.3208 0.3006 0.3706 0.0258 0.3756 0.3207 0.3938
CISPLATIN 0.6222 +- 0.512 +- 0.2984 +- 0.4127 +- 0.8222 +- CISPLATIN 0.6909 +- 0.0984 +- 0.3555 +- 0.4219 +- 0.9056 +-

0.4018 0.2038 0.1507 0.1915 0.1678 0.2677 0.0144 0.1869 0.2401 0.1055
GEMCITABI 0.5347 +- 0.432 +- 0.4216 +- 0.4474 +- 0.6984 +- GEMCITABI 0.7391 +- 0.2104 +- 0.65 +- 0.6551 +- 0.8119 +-
NE 0.1185 0.0944 0.1713 0.2252 0.2374 NE 0.2081 0.1009 0.2173 0.1409 0.1544
TEMOZOLO | 0.6984 +- 0.4716 +- 0.7401 +- 0.9127 +- 0.6548 +- TEMOZOLO | 0.7714 +- 0.204 +- 0.7579 +- 0.9222 +- 0.7818 +-
MIDE 0.0999 0.1375 0.0653 0.0422 0.2407 MIDE 0.1482 0.1348 0.1835 0.0592 0.0589
5-FLUOROU | 0.7222 +- 0.3684 +- 0.3889 +- 0.6111 +- 0.7778 +- 5-FLUOROU | 0.7611 +- 0.0609 +- 0.4556 +- 0.6111 +- 0.8055 +-
RACIL 0.347 0.1255 0.2546 0.2546 0.0962 RACIL 0.282 0.012 0.1134 0.2097 0.0481
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Additional experiments

* Ablation study
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DrulD: Ablation

value

0.85 1

0.80 1

0.75 1

0.70 1

0.65 1

0.60 1

0.55 1

0.50

0.45 1

e AUROC
’ | ’ ' ﬁ+ ’ ® AUPRC

DrulD

DrulD-VA DrulD-VA-ZINB
Model

Addition of variant annotations improves performance
Using zero inflated distributions help, but is not significant
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