Learning in Limited Data Settings Advancing Personalized Medicine in Cancer Treatment Planning*

Vaibhav Rajan Google DeepMind

*work funded at National University of Singapore

No sign-off yet | Foundation Medicine, Inc. | 1.888.988.3639

Can AI help us identify the right drug for such cancer patients?

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141- CLIA: 22D2027531 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141- CLIA: 22D2027531 PAGE 1. OÉ 25

NORMAL CELL AND CANCER CELL DEVELOPMENT

Image by brgfx on Freepik

Cancer is a *genetic disease*, i.e., it is caused by changes to genes (mutations) Cancer is a leading cause of death worldwide (one-in-six deaths, 2020)

Each cell in our body contains 23 pairs of chromosomes

Each chromosome is a sequence of "base pairs", bases are A, C, G, T

Gene: **subsequence of the chromosome** which has functional importance

~20,000 genes have been identified

https://www.cancer.gov/about-cancer/understanding/what-is-cancer

https://www.who.int/news-room/fact-sheets/detail/cancer

CANCER TREATMENT

- Treatment remains challenging
 - Complex disease: *Every cancer has an individual set of mutations*
 - A drug that works for one cancer patient, might have absolutely no effect on another
- > Treatment must be tailored to each patient: **personalized therapy**

https://www.worldwidecancerresearch.org/news-opinion/2021/march/why-havent-we-cured-cancer-yet/ https://en.wikipedia.org/wiki/Personalized_medicine

CANCER GENOMICS DATA

The Cancer Genome Atlas (TCGA)

Since 2006 > 11,000 patients 2.5 PetaBytes of Data 33 cancer types

Many similar data collection efforts to understand cancer

REPRESENTING GENOMIC DATA

Raw sequence (rarely used)

...ACCTTTCGGCCGGACCCCC...

Mutation Vector

Genes of interest

 G1	G2	G3	G4	G5	G6	G7	G8	G9	
1	0	1	0	0	0	0	1	0	
7 \									

Binary indicator: 1 \rightarrow mutation in gene, 0 \rightarrow no mutation

Gene Expression Vector

Genes of interest:

st:	G1	G2	G3	G4	G5	G6	G7	G8	G9	
	6	2.1	3	0	0	0	0	1	0	
		ount or	real va	alue: in	dicates	activit	y level	of gen	e	

Sequence of Mutations

G1: R273C, G1: S1372L, G2: L145V ...

In gene G1, at location 273 a mutation changed R to C in the protein

DRUG RESPONSE MEASUREMENTS

- 1. Response Evaluation Criteria In Solid Tumors (RECIST)
 - > Standard way to measure how well a cancer patient responds to treatment.

	RECIST			
Cood response (label + 1)	CR	Complete Response		
	PR	Partial Response		
Bad response (label -1)	PD	Progressive Disease		
	SD	Stable Disease		

2. Progression-free Survival (PFS)

The length of time during and after the treatment (days/months/years), that a patient lives without the cancer getting worse.

DRUG RESPONSE PREDICTION (DRP)

Given:

- a patient's genomic profile and
- a drug

Will the response of the patient to the drug be good?

DRUG RESPONSE PREDICTION (DRP)

X: Patient's genomic data (e.g., mutation vector or gene expression)

- \succ Y: RECIST value after administering drug d
- > $Y \sim f_d(X) \rightarrow$ binary classification
- > Challenge
 - X: abundant, but...
 - *Y*: extremely limited for any drug *d*
- > Why?
 - Each patient is given one/few drugs, counterfactual unknown

CELL LINES: A RELATED "DOMAIN"

Extract cancer cells and clone them in lab (living cells, continue growing)
 Ensures each cell has same genomic data (X)

Administer multiple drugs on cell lines, measure response Y

DRUG RESPONSE MEASUREMENT IN CELL LINES

Area under the Dose Response Curve (AUDRC)

Real-valued [0,1]

- Administer progressively increasing concentration (X-axis) of drug and measure the amount of cancer cells (Y-axis) killed: Dose Response Curve (DRC)
- Lesser concentration kills more cells → more effective drug
 →Lower AUDRC
- E.g. efficacy of III > I > II

Vis, D. J. et al. Multilevel models improve precision and speed of IC50 estimates. Pharmacogenomics 2016.

CELL LINES: A RELATED "DOMAIN"

Extract cancer cells and clone them in lab (living cells, continue growing)
 Ensures each cell has same genomic data (X)

Administer multiple drugs on cell lines, measure response Y

> Can a Drug Response Prediction model on cell lines $Y \sim f_d(X)$ work for patients?

CELL LINES: A RELATED "DOMAIN"

Extract cancer cells and clone them in lab (living cells, continue growing)
 Ensures each cell has same genomic data (X)

Administer multiple drugs on cell lines, measure response Y

> Can a Drug Response Prediction model on cell lines $Y \sim f_d(X)$ work for patients?

No: drug responses differ across patients and cell lines

PROBLEM STATEMENT

Given:

Domain	Genomic Profile	Drug Response	#samples	$N_p \ll N_c \ll N_t$ $P(X_c) \neq P(X_t)$
Cell Lines	X _c	$Y_c^d \in R$ (AADRC)	N _c labeled	$f_c^d \not\sim f_t^d$
Patients	X _t	$Y_t^d \in \{0,1\}$ (RECIST)	N_p labeled N_t unlabeled	where $Y_c^d \sim f_c^d(X_c), Y_t^d \sim f_t^d(X_t)$

➤ Infer: Drug Response Prediction model $f_t^d: Y_t^d \sim f_t^d(X_t), \quad \forall \text{ drug } d \in \{d_1, d_2, \dots d_n\}$

Method	Clinical translation requirements				Transfer learning requirements		
PRECISE (2019)	?	?	?	?	Input	Output	?
AITL (2020)					discrepancy	discrepancy	
TCRP (2021)							
Velodrome (2021)							
TRANSACT (2021)							
TUGDA (2021)							
CODE-AE (2022)							
PANCDR (2024)							
Drug2tme (2024)							

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). "AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics," Bioinformatics (36:Supplement_1), pp. i380–i388.

DRP Requirements

From prior DRP literature

- Handle input discrepancy
- Handle output discrepancy
- Model patient mutation heterogeneity

Transfer learning dimensions

Method	Clinical translation requirements			Transfer learning requirements			
PRECISE (2019)	?	?	?	?	Input	Output	Model patient
AITL (2020)					discrepancy	discrepancy	^[2]
TCRP (2021)							
Velodrome (2021)							
TRANSACT (2021)							
TUGDA (2021)							
CODE-AE (2022)							
PANCDR (2024)							
Drug2tme (2024)							

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). "AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics," Bioinformatics (36:Supplement_1), pp. i380–i388.

[2] Zhai, J., & Liu, H. (2024). Cross-domain feature disentanglement for interpretable modeling of tumor microenvironment impact on drug response. *IEEE Journal of Biomedical and Health Informatics*.

Bridging the AI translational gap

Clinical usability

- Use of clinically available input data (clinical sequencing profiles)^[1]
- Clinical utility
 - Use of clinically meaningful outcomes
 - Time/cost savings
- Clinical validity
 - Evaluation in real-world situations (clinical trials)

[2] Kann, B. H., Hosny, A., & Aerts, H. J. (2021). Artificial intelligence for clinical oncology. *Cancer Cell*, 39(7), 916-927

Dimensions of comparison

Consideration for Clinical Translation	Requirement for clinical translation	Dimension				
Clinical Usability	Use of clinically available input data	Training with mutation profiles (varying length)				
Clinical Utility	Use of clinically meaningful outcomes	Utilise all patient response-related information like survival				
	Time/cost savings	Enable repurposing of drugs already approved for clinical use				
Clinical Validity	Evaluation in real-world situations	Clinical trials for validation				

DRP Requirements

Consideration for Clinical Translation	Dimension
Clinical Usability	Training with mutation profiles (varying length)
Clinical Utility	Utilise all patient response-related information like survival
	Enable repurposing of drugs already approved for clinical use
Clinical Validity	Clinical trials for validation

For clinical translation

- Training with mutations available in clinical sequencing reports
- Model varying length mutations
- Utilise all available auxiliary patient response information (PFS)
- Predict on drugs unseen during training

DRP Requirements

For clinical translation

- Training with mutations available in clinical sequencing reports
- Predict on drugs unseen during training
- Model varying length mutations
- Utilise all available auxiliary patient response information (PFS)

From prior DRP literature

- Handle input discrepancy
- Handle output discrepancy
- Model patient mutation heterogeneity

Method	Clinical translation requirements				Transfer learning requirements			
PRECISE (2019)	Train with	Model	Predict on	Utilise	Input	Output	Model patient	
AITL (2020)	from	length	drugs unseen during	available patient	discrepancy	discrepancy ^[1]	^[2]	
TCRP (2021)	clinical .	mutations ^[3]	training ^[4]	response				
Velodrome (2021)	g			data (PFS) ^[3]				
TRANSACT (2021)	profiles ^[3]							
TUGDA (2021)	clinicians)							
CODE-AE (2022)								
PANCDR (2024)								
Drug2tme (2024)								

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). "AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics," Bioinformatics (36:Supplement_1), pp. i380–i388.

[2] Zhai, J., & Liu, H. (2024). Cross-domain feature disentanglement for interpretable modeling of tumor microenvironment impact on drug response. *IEEE Journal of Biomedical and Health Informatics*.
 [3] Jayagopal, A., Xue, H., He, Z., Walsh, R. J., Hariprasannan, K. K., Tan, D. S. P., ... & Rajan, V. (2024, August). Personalised Drug Identifier for Cancer Treatment with Transformers using Auxiliary Information. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining* (pp. 5138-5149).

[4] Hua, Y., Dai, X., Xu, Y., Xing, G., Liu, H., Lu, T., ... & Zhang, Y. (2022). Drug repositioning: Progress and challenges in drug discovery for various diseases. European Journal of Medicinal Chemistry, 234, 114239.

	Transfer Learning requirements			Clinical translation requirements			
Method	Input discrepan cy	Output discrepancy	Model patient mutation heterogenei ty in downstrea m DRP	Training with clinical mutations	Varying length inputs modelled	Use of auxiliary information (PFS)	Prediction on drugs unseen in training (for repurposing)
PRECISE (2019)	\checkmark						
AITL (2020)	\checkmark	\checkmark					
TCRP (2021)	\checkmark						
Velodrome (2021)	~						
TRANSACT (2021)	~						
TUGDA (2021)	\checkmark						
CODE-AE (2022)	~						
PANCDR (2024)	\checkmark						\checkmark
Drug2tme (2024)	\checkmark	\checkmark	\checkmark				\checkmark

Not clinically translatable!

	Transfer Learning requirements			Clinical translation requirements			
Method	Input discrepanc y	Output discrepancy	Model patient mutation heterogeneit y	Training with clinical mutations	Varying length inputs modelled	Use of auxiliary information (PFS)	Prediction on drugs unseen in training (for repurposing)
PRECISE (2019)	\checkmark						
AITL (2020)	\checkmark	\checkmark					
TCRP (2021)	\checkmark						
Velodrome (2021)	\checkmark						
TRANSACT (2021)	\checkmark						
TUGDA (2021)	\checkmark						
CODE-AE (2022)	\checkmark						
PANCDR (2024)	\checkmark						\checkmark
Drug2tme (2024)	\checkmark	\checkmark	\checkmark				\checkmark
DruID	✓	\checkmark		✓			✓
PREDICT-AI	\checkmark	\checkmark		\checkmark	\checkmark	✓	\checkmark
GANDALF	✓	\checkmark	✓	✓	✓	✓	✓

Cell iScience

KDD'24

ICLR'25

Methods

DRP Requirements

For clinical translation

- Training with mutations available in clinical sequencing reports
- Predict on drugs unseen during training
- Model varying length mutations
- Utilise all available auxiliary patient response information (PFS)

From prior DRP literature

- Handle input discrepancy
- Handle output discrepancy
- Model patient mutation heterogeneity

DruID: Drug IDentifier

Jayagopal, A., Walsh, R.J., Hariprasannan, K.K., Mariappan, R., Mahapatra, D., Jaynes, P.W., Lim, D., Tan, D.S.P., Tan, T.Z., Pitt, J.J., Jeyasekharan, A.D. and Rajan, V, "A multi-task domain-adapted model to predict chemotherapy response from mutations in recurrently altered cancer genes." *iScience* 28.3 (2025).

DRP Requirements

For clinical translation

- Training with mutations available in clinical sequencing reports
- Predict on drugs unseen during training
 - Model varying length mutations
 - Utilise all available auxiliary patient response information (PFS) From prior DRP literature
 - Handle input discrepancy
 - Handle output discrepancy
 - Model patient mutation heterogeneity

Model Design

For clinical translation

- Training with mutations available in clinical sequencing reports
- Predict on drugs unseen during training
- Model varying length mutations
- Utilise all available auxiliary patient response information (PFS)

From prior DRP literature

- Handle input discrepancy
- Handle output discrepancy
- Model patient mutation heterogeneity

Requirement

Training with mutations available in clinical sequencing reports

Predict on drugs unseen during training

Handle input space discrepancy

Handle output space discrepancy

Model Design

Requirement	Considerations	Design Choice
Training with mutations available in clinical sequencing reports	Sparse, high dimensional nature of mutations	Use VAEs, with zero inflated distributions to model sparsity and high dimensional data

Variational Autoencoders

- A variational autoencoder tries to find a latent representation z that increases the probability of reconstructing the original input from it. In the encoder, variational probability Q(z|Y) is used to approximate the posterior P(z|Y). Neural networks are used as encoders and decoders to obtain the lower dimensional representation.
- Basic idea is to learn the probability distribution

In variational autoencoders, the loss function is composed of a reconstruction term (that makes the encodingdecoding scheme efficient) and a regularisation term (that makes the latent space regular).

From https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Zero inflated distributions

Zero Inflated Distribution

- Used for sparse datasets.
- Has a point mass at 0, for 0 values and NB for ordinal values/Normal for real.

$$ZINB(Y; \Pi, \Omega, \Theta) = \Pi\Delta_{0}(Y) + (1 - \Pi)NB(Y; \Omega, \Theta)$$

$$\Pi = sigmoid(Y, W_{\Pi}); \ \Omega = \exp(Y, W_{\Omega}); \ \Theta = \exp(Y, W_{\Theta})$$

$$NB(Y; \Omega, \Theta) = \frac{\Gamma(Y + \Theta)}{Y! \Gamma(\Theta)} (\frac{\Theta}{\Theta + \mu})^{\Theta} (\frac{\mu}{\Theta + \mu})^{Y}$$

Parameter estimation:

$$L_{Re} = NLL_{ZI}(X_e; \Pi_e, \Omega_e, \Theta_e) + \lambda ||\Pi_e||^2$$

NLL ZINB

- For non-zero values
 - $\begin{aligned} &-\log[(1-\pi)NB(x;\mu,\theta)] \\ &= log\Gamma(x+1) + (\theta+x)\log(\theta+\mu) xlog\mu \theta log\theta + log\Gamma(\theta) \\ &- log\Gamma(x+\theta) \log(1-\pi) \end{aligned}$
- For zero case

$$-\log\left[\pi + (1-\pi)\left(\frac{\theta}{\theta+\mu}\right)^{\theta}\right]$$

• Add regularizing term with above value $\lambda ||\Pi_e||^2$

Model Design

Requirement	Considerations	Design Choice
Training with mutations available in clinical sequencing reports	Sparse, high dimensional nature of mutations	Use VAEs, with zero inflated distributions to model sparsity and high dimensional data
Predict on drugs unseen during training	Include drug information as a model input	Morgan fingerprint (binary) to encode drug information

Model Design

Requirement	Considerations	Design Choice
Training with mutations available in clinical sequencing reports	Sparse, high dimensional nature of mutations	Use VAEs, with zero inflated distributions to model sparsity and high dimensional data
Predict on drugs unseen during training	Include drug information as a model input	Morgan fingerprint (binary) to encode drug information
Handle input space discrepancy	Model shared characteristics common to cell lines and patients	Learn shared embedding by aligning domain representations, CORAL loss

CORAL loss

- Unsupervised domain adaptation loss
- Aligns source and target domains minimizes covariance of input feature distributions
- Useful when distributions of domains are different

$$L_{CORAL} = ||cov(z_c) - cov(z_p)||$$

$$cov(z) = \frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z}_i)(z_i - \bar{z}_i)'$$

Model Design

Requirement	Considerations	Design Choice
Training with mutations available in clinical sequencing reports	Sparse, high dimensional nature of mutations	Use VAEs, with zero inflated distributions to model sparsity and high dimensional data
Predict on drugs unseen during training	Include drug information as a model input	Morgan fingerprint (binary) to encode drug information
Handle input space discrepancy	Model shared characteristics common to cell lines and patients	Learn shared embedding by aligning domain representations, CORAL loss
Handle output space discrepancy	Model differences in responses in both domains	Use multi-task learning to model the outputs – regression for cell lines and classification for patients.

Incorporate biological information available on each mutation

DruID: Pretraining

 Pretraining loss is a combination of reconstruction loss and alignment loss

$$L_{Re} = NLL_{ZI}(X_e; \Pi_e, \Omega_e, \Theta_e) + \lambda ||\Pi_e||^2$$

$$L_{KLDe} = -0.5 * \sum (1 + \log(\sigma_e^2) - \mu_e^2 - \sigma_e^2)$$

$$L_{CORAL} = ||cov(z_c) - cov(z_p)||$$

$$cov(z) = \frac{1}{n} \sum_{i=1}^n (z_i - \bar{z_i})(z_i - \bar{z_i})'$$

$$L_{pretraining} = L_{Rc} + L_{KLDc} + L_{Rp} + L_{KLDp} + L_{CORAL}$$

DruID: MTL

T

 Training loss is a multi objective optimization of MSE and BCE logit loss

$$L_{BCE} = -[y_{RECIST} \log(sigmoid(\bar{y}_{RECIST})) + (1 - y_{RECIST})\log(1 - sigmoid(\bar{y}_{RECIST}))]$$

$$L_{MSE} = (y_{AUDRC} - \bar{y}_{AUDRC})^{2}$$

$$L_{MTL} = \max(\lambda_{c}L_{MSE}, \lambda_{p}L_{BCE})$$

Model Training

Stage I: Pretraining VAEs

Experiment: Data

- Cancer cell lines
 - Mutation profiles: CCLE DepMap portal^[1]
 - AUDRC labels: GDSC portal^[2]
- Patients
 - Pan cancer TCGA patient mutation profiles and RECIST labels: TCGA GDC portal^[3]
- Only 324 genes from FoundationOne CDx report retained for use

Experimental Settings

- Split cell line and patient data into train and test splits (80:20)
 - Generate 3 different train-test splits
 - TCGA test split 90
- Train model on train splits of cell lines and patients
 - Cell line TCGA dataset: 689 cell line-drug pairs, 444 patient-drug pairs
- Evaluation using AUROC and AUPRC on test splits of patients (RECIST)
- Comparison of baselines against most recent work CODE-AE, TUGDA, TCRP, Velodrome

Results: Comparison against SOTA

Additional experiments

- Performance comparison of mutation against gene expression (& other data types) data from genes in clinical sequencing panels
- Validation of DruID on real-world data from NUH, Singapore
- Comparison of DruID against SOTA on gene expression
- Ablation study

Does the use of clinical NGS work as well as WES?

Subset1: 324 genes included in FoundationOne CDx.

Subset2: 285 genes common across FoundationOne CDx, TruSight Oncology 500 and Tempus xF+ cNGS panels. Subset3: 19,536 genes, nearly all those available from WES.

DruID: Comparison of input types

DruID: Comparison of input types

Additional experiments

- Performance comparison of mutation against gene expression data from genes in clinical sequencing panels
- Validation of DruID on real-world data from NUH, Singapore
- Comparison of DruID against SOTA on gene expression
- Ablation study

DruID: On real world datasets

DruID: On real world datasets

Colorectal cancer - AUPRC

DruID: On real world datasets

44

Additional experiments

- Performance comparison of mutation against gene expression data from genes in clinical sequencing panels
- Validation of DruID on real-world data from NUH, Singapore
- Comparison of DruID against SOTA on gene expression
- Ablation study

DruID: Comparison against SOTA on gene expression

AUROC scores					
Drug	TCRP	TUGDA	Velodrome	CODE-AE	DruID
SORAFENIB	0.5482 +-	0.4786 +-	0.5482 +-	0.3704 +-	0.6889 +-
	0.3445	0.3203	0.3066	0.3208	0.3006
CISPLATIN	0.6222 +-	0.512 +-	0.2984 +-	0.4127 +-	0.8222 +-
	0.4018	0.2038	0.1507	0.1915	0.1678
GEMCITABI	0.5347 +-	0.432 +-	0.4216 +-	0.4474 +-	0.6984 +-
NE	0.1185	0.0944	0.1713	0.2252	0.2374
TEMOZOLO	0.6984 +-	0.4716 +-	0.7401 +-	0.9127 +-	0.6548 +-
MIDE	0.0999	0.1375	0.0653	0.0422	0.2407
5-FLUOROU	0.7222 +-	0.3684 +-	0.3889 +-	0.6111 +-	0.7778 +-
RACIL	0.347	0.1255	0.2546	0.2546	0.0962

AUPRC scores					
Drug	TCRP	TUGDA	Velodrome	CODE-AE	DruID
SORAFENIB	0.613 +-	0.086 +-	0.6333 +-	0.537 +-	0.6944 +-
	0.3706	0.0258	0.3756	0.3207	0.3938
CISPLATIN	0.6909 +-	0.0984 +-	0.3555 +-	0.4219 +-	0.9056 +-
	0.2677	0.0144	0.1869	0.2401	0.1055
GEMCITABI	0.7391 +-	0.2104 +-	0.65 +-	0.6551 +-	0.8119 +-
NE	0.2081	0.1009	0.2173	0.1409	0.1544
TEMOZOLO	0.7714 +-	0.204 +-	0.7579 +-	0.9222 +-	0.7818 +-
MIDE	0.1482	0.1348	0.1835	0.0592	0.0589
5-FLUOROU	0.7611 +-	0.0609 +-	0.4556 +-	0.6111 +-	0.8055 +-
RACIL	0.282	0.012	0.1134	0.2097	0.0481

Additional experiments

- Performance comparison of mutation against gene expression data from genes in clinical sequencing panels
- Validation of DruID on real-world data from NUH, Singapore
- Comparison of DruID against SOTA on gene expression
- Ablation study

DruID: Ablation

- Addition of variant annotations improves performance
- Using zero inflated distributions help, but is not significant