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Cancer is a genetic disease, i.e., it is caused by changes to genes (mutations)
Cancer is a leading cause of death worldwide (one-in-six deaths, 2020)

https://www.cancer.gov/about-cancer/understanding/what-is-cancer 

Each cell in our body contains 23 pairs of chromosomes

Each chromosome is a sequence of “base pairs” , bases 
are A, C, G, T

Gene: subsequence of the chromosome which has 
functional importance

~20,000 genes have been identified

https://www.who.int/news-room/fact-sheets/detail/cancer

CANCER

https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.who.int/news-room/fact-sheets/detail/cancer


➢ Treatment remains challenging 

• Complex disease: Every cancer has an individual set of mutations
• A drug that works for one cancer patient, might have absolutely no effect on another

➢ Treatment must be tailored to each patient: personalized therapy

https://www.worldwidecancerresearch.org/news-opinion/2021/march/why-havent-we-cured-cancer-yet/
https://en.wikipedia.org/wiki/Personalized_medicine

CANCER TREATMENT

https://www.worldwidecancerresearch.org/news-opinion/2021/march/why-havent-we-cured-cancer-yet/
https://en.wikipedia.org/wiki/Personalized_medicine
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➢Many similar data collection efforts to 
understand cancer

Weinstein, J. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 2013

CANCER GENOMICS DATA

The Cancer Genome Atlas (TCGA) 

Since 2006

> 11,000 patients

2.5 PetaBytes of Data

33 cancer types
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G1 G2 G3 G4 G5 G6 G7 G8 G9 …

1 0 1 0 0 0 0 1 0 …

Genes of interest:

Binary indicator: 1 → mutation in gene, 0 → no mutation

G1 G2 G3 G4 G5 G6 G7 G8 G9 …

6 2.1 3 0 0 0 0 1 0 …

Count or real value: indicates activity level of gene

Genes of interest:

G1: R273C, G1: S1372L, G2: L145V …  
In gene G1, at location 273 a mutation changed R to C in the protein

REPRESENTING GENOMIC DATA

Raw sequence (rarely used)

Mutation Vector

Gene Expression Vector

Sequence of Mutations



1. Response Evaluation Criteria In Solid Tumors (RECIST)

➢  Standard way to measure how well a cancer patient responds to treatment.

RECIST

CR Complete Response

PR Partial Response

PD Progressive Disease

SD Stable Disease

Good response (label +1)

Bad response (label -1)

DRUG RESPONSE MEASUREMENTS

2. Progression-free Survival (PFS)      

➢ The length of time during and after the treatment (days/months/years), that a  
patient lives without the cancer getting worse.



➢Given:

• a patient’s genomic profile and 

• a drug

➢Will the response of the patient to 
the drug be good?

One day…
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➢ 𝑋: Patient’s genomic data (e.g., mutation vector or gene expression)
➢ 𝑌: RECIST value after administering drug 𝑑

➢ 𝑌 ~ 𝑓𝑑(𝑋) → binary classification
➢    Challenge

• 𝑋: abundant, but…
• 𝑌: extremely limited for any drug 𝑑

➢    Why?
• Each patient is given one/few drugs, counterfactual unknown

DRUG RESPONSE PREDICTION (DRP)



Response

Response

Response

Response

Cell lines

Patient

Clones

Extracted cancer cells

CELL LINES: A RELATED “DOMAIN”

➢ Extract cancer cells and clone them in lab (living cells, continue growing)
➢ Ensures each cell has same genomic data (𝑋)

➢ Administer multiple drugs on cell lines, measure response 𝑌



Vis, D. J. et al. Multilevel models improve precision and speed of IC50 estimates. Pharmacogenomics 2016.

Area under the Dose Response Curve (AUDRC)

• Administer progressively increasing concentration (X-axis) 
of drug and measure the amount of cancer cells (Y-axis) 
killed: Dose Response Curve (DRC)

• Lesser concentration kills more cells → more effective drug 
→Lower AUDRC

• E.g. efficacy of III > I > II

DRUG RESPONSE MEASUREMENT IN CELL LINES

Real-valued [0,1]
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CELL LINES: A RELATED “DOMAIN”

➢ Extract cancer cells and clone them in lab (living cells, continue growing)
➢ Ensures each cell has same genomic data (𝑋)

➢ Administer multiple drugs on cell lines, measure response 𝑌

➢ Can a Drug Response Prediction model on cell lines 𝒀 ~ 𝒇𝒅(𝑿) work for patients?
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CELL LINES: A RELATED “DOMAIN”

No: drug responses differ across patients and cell lines

➢ Extract cancer cells and clone them in lab (living cells, continue growing)
➢ Ensures each cell has same genomic data (𝑋)

➢ Administer multiple drugs on cell lines, measure response 𝑌

➢ Can a Drug Response Prediction model on cell lines 𝒀 ~ 𝒇𝒅(𝑿) work for patients?



Sample acquisition

Sequencing

Mutation profile

Distribution of Mutations

Patient Cell line

Responder

Non-Responder

Targeted Treatment

Measurement of
response

Responses

RECIST AUDRC

INPUT SPACE
DISCREPANCY

OUTPUT SPACE
DISCREPANCY

Binary Classification Regression



➢    Given:

➢    Infer: Drug Response Prediction model
     𝑓𝑡

𝑑 :  𝑌𝑡
𝑑 ~ 𝑓𝑡

𝑑 𝑋𝑡 ,  ∀ drug 𝑑 ∈ {𝑑1, 𝑑2, … 𝑑𝑛}

Domain Genomic
Profile

Drug Response #samples 𝑁𝑝 ≪ 𝑁𝑐 ≪ 𝑁𝑡
𝑃 𝑋𝑐 ≠ 𝑃 𝑋𝑡

𝑓𝑐
𝑑 ∼ 𝑓𝑡

𝑑

where 
𝑌𝑐

𝑑 ~ 𝑓𝑐
𝑑 𝑋𝑐 , 𝑌𝑡

𝑑 ~ 𝑓𝑡
𝑑(𝑋𝑡)

 

Cell Lines 𝑋𝑐 𝑌𝑐
𝑑 ∈ 𝑅 (AADRC) 𝑁𝑐 labeled

Patients 𝑋𝑡 𝑌𝑡
𝑑 ∈ {0,1} (RECIST) 𝑁𝑝 labeled

𝑁𝑡 unlabeled

PROBLEM STATEMENT



Method Clinical translation requirements Transfer learning requirements

PRECISE (2019) ? ? ? ? Input 
discrepancy[1]

Output 
discrepancy[1]

?

AITL (2020)

TCRP (2021)

Velodrome (2021)

TRANSACT (2021)

TUGDA (2021)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)

1

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). “AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics,” 
Bioinformatics (36:Supplement_1), pp. i380–i388.



DRP Requirements

From prior DRP literature
• Handle input discrepancy
• Handle output discrepancy
• Model patient mutation heterogeneity

2

Transfer learning dimensions



Method Clinical translation requirements Transfer learning requirements

PRECISE (2019) ? ? ? ? Input 
discrepancy[1]

Output 
discrepancy[1]

Model patient 
heterogeneity 
[2]AITL (2020)

TCRP (2021)

Velodrome (2021)

TRANSACT (2021)

TUGDA (2021)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)

3

[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). “AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics,” 
Bioinformatics (36:Supplement_1), pp. i380–i388.
[2] Zhai, J., & Liu, H. (2024). Cross-domain feature disentanglement for interpretable modeling of tumor microenvironment impact on drug response. IEEE Journal of Biomedical and Health Informatics.



Bridging the AI translational gap

• Clinical usability
• Use of clinically available input data 

(clinical sequencing profiles)[1]

• Clinical utility
• Use of clinically meaningful outcomes
• Time/cost savings

• Clinical validity
• Evaluation in real-world situations 

(clinical trials)

[1] El Naqa, I., Karolak, A., Luo, Y., Folio, L., Tarhini, A. A., Rollison, D., & Parodi, K. (2023). Translation of AI into oncology clinical practice. Oncogene, 42(42), 3089-3097.

[2] Kann, B. H., Hosny, A., & Aerts, H. J. (2021). Artificial intelligence for clinical 
oncology. Cancer Cell, 39(7), 916-927

4



Dimensions of comparison

Consideration for 
Clinical Translation

Requirement for 
clinical translation

Dimension

Clinical Usability Use of clinically 
available input data 

Training with mutation 
profiles (varying length)

Clinical Utility Use of clinically 
meaningful outcomes

Utilise all patient 
response-related 
information like survival

Time/cost savings Enable repurposing of 
drugs already approved 
for clinical use

Clinical Validity Evaluation in real-world 
situations 

Clinical trials for 
validation

After model development

5



DRP Requirements

For clinical translation
• Training with mutations available 

in clinical sequencing reports
• Model varying length mutations
• Utilise all available auxiliary 

patient response information 
(PFS)

• Predict on drugs unseen during 
training

6

Consideration for 
Clinical Translation

Dimension

Clinical Usability Training with mutation 
profiles (varying length)

Clinical Utility Utilise all patient 
response-related 
information like 
survival
Enable repurposing of 
drugs already approved 
for clinical use

Clinical Validity Clinical trials for 
validation

After model development



DRP Requirements

For clinical translation
• Training with mutations available in clinical sequencing reports
• Predict on drugs unseen during training
• Model varying length mutations
• Utilise all available auxiliary patient response information (PFS)
From prior DRP literature
• Handle input discrepancy
• Handle output discrepancy
• Model patient mutation heterogeneity

7



Method Clinical translation requirements Transfer learning requirements

PRECISE (2019) Train with 
mutations 
from 
clinical 
sequencin
g 
profiles[3] 
(from 
clinicians)

Model 
varying 
length 
mutations[3]

Predict on 
drugs unseen 
during 
training[4]

Utilise 
available 
patient 
response 
data (PFS)[3]

Input 
discrepancy[1]

Output 
discrepancy[1]

Model patient 
heterogeneity 
[2]AITL (2020)

TCRP (2021)

Velodrome (2021)

TRANSACT (2021)

TUGDA (2021)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)
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[1] Sharifi-Noghabi, H., Peng, S., Zolotareva, O., Collins, C. C., and Ester, M. (2020). “AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics,” 
Bioinformatics (36:Supplement_1), pp. i380–i388.
[2] Zhai, J., & Liu, H. (2024). Cross-domain feature disentanglement for interpretable modeling of tumor microenvironment impact on drug response. IEEE Journal of Biomedical and Health Informatics.
[3] Jayagopal, A., Xue, H., He, Z., Walsh, R. J., Hariprasannan, K. K., Tan, D. S. P., ... & Rajan, V. (2024, August). Personalised Drug Identifier for Cancer Treatment with Transformers using Auxiliary 
Information. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 5138-5149).
[4] Hua, Y., Dai, X., Xu, Y., Xing, G., Liu, H., Lu, T., ... & Zhang, Y. (2022). Drug repositioning: Progress and challenges in drug discovery for various diseases. European Journal of Medicinal Chemistry, 234, 
114239.



Transfer Learning requirements Clinical translation requirements

Method Input 
discrepan
cy

Output 
discrepancy

Model 
patient 
mutation 
heterogenei
ty in 
downstrea
m DRP

Training with 
clinical 
mutations

Varying 
length 
inputs 
modelled

Use of 
auxiliary 
information 
(PFS)

Prediction on 
drugs unseen 
in training (for 
repurposing)

PRECISE (2019)

AITL (2020)

TCRP (2021)

Velodrome (2021)

TRANSACT (2021)

TUGDA (2021)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)

Not clinically translatable!

9



Transfer Learning requirements Clinical translation requirements

Method Input 
discrepanc
y

Output 
discrepancy

Model 
patient 
mutation 
heterogeneit
y

Training with 
clinical 
mutations

Varying 
length inputs 
modelled

Use of auxiliary 
information 
(PFS)

Prediction on 
drugs unseen 
in training (for 
repurposing)

PRECISE (2019)

AITL (2020)

TCRP (2021)

Velodrome (2021)

TRANSACT (2021)

TUGDA (2021)

CODE-AE (2022)

PANCDR (2024)

Drug2tme (2024)

DruID

PREDICT-AI

GANDALF

10



11

DruID PREDICT-AI GANDALF

First approach towards 
predicting drug response from 
clinical grade mutation profiles

Utilises all available patient 
response related data

Data augmentation approach to 
handle data scarcity

Goal

Cell iScience KDD’24 ICLR’25



Methods

12



DRP Requirements

For clinical translation
• Training with mutations available in clinical sequencing reports
• Predict on drugs unseen during training
• Model varying length mutations
• Utilise all available auxiliary patient response information (PFS)
From prior DRP literature
• Handle input discrepancy
• Handle output discrepancy
• Model patient mutation heterogeneity

13



DruID: Drug IDentifier

14

Jayagopal, A., Walsh, R.J., Hariprasannan, K.K., Mariappan, R., Mahapatra, D., Jaynes, P.W., Lim, D., Tan, D.S.P., Tan, T.Z., Pitt, J.J., Jeyasekharan, A.D. and Rajan, V, "A multi-task 
domain-adapted model to predict chemotherapy response from mutations in recurrently altered cancer genes." iScience 28.3 (2025).



DRP Requirements

For clinical translation
• Training with mutations available in clinical sequencing reports
• Predict on drugs unseen during training
• Model varying length mutations
• Utilise all available auxiliary patient response information (PFS)
From prior DRP literature
• Handle input discrepancy
• Handle output discrepancy
• Model patient mutation heterogeneity

15



Model Design

Requirement

Training with mutations available 
in clinical sequencing reports
Predict on drugs unseen during 
training
Handle input space discrepancy

Handle output space 
discrepancy

16

For clinical translation
• Training with mutations available in clinical 

sequencing reports
• Predict on drugs unseen during training
• Model varying length mutations
• Utilise all available auxiliary patient 

response information (PFS)
From prior DRP literature
• Handle input discrepancy
• Handle output discrepancy
• Model patient mutation heterogeneity



Model Design

Requirement Considerations Design Choice

Training with mutations available 
in clinical sequencing reports

Sparse, high dimensional nature 
of mutations

Use VAEs, with zero inflated 
distributions to model sparsity 
and high dimensional data

17



Variational Autoencoders

• A variational autoencoder tries to 
find a latent representation z that 
increases the probability of 
reconstructing the original input 
from it. In the encoder, variational 
probability Q(z|Y ) is used to 
approximate the posterior P(z|Y). 
Neural networks are used as 
encoders and decoders to obtain 
the lower dimensional 
representation.

• Basic idea is to learn the 
probability distribution

18

From https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



Zero inflated distributions

Zero Inflated Distribution
• Used for sparse datasets.
• Has a point mass at 0, for 0 values and NB for ordinal values/Normal for 

real.
𝑍𝐼𝑁𝐵 𝑌; Π, Ω, Θ =  ΠΔ0 𝑌 + 1 − Π 𝑁𝐵(𝑌; Ω, Θ)

 Π = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑌. 𝑊Π ;  Ω = exp 𝑌. 𝑊Ω ;  Θ = exp(𝑌. 𝑊Θ)

𝑁𝐵 𝑌; Ω, Θ =
Γ(𝑌 +  Θ)

𝑌! Γ(Θ)
(

Θ
Θ + 𝜇

)Θ(
𝜇

Θ + 𝜇
)𝑌

Parameter estimation:
𝐿𝑅𝑒 = 𝑁𝐿𝐿𝑍𝐼 𝑋𝑒; Π𝑒, Ω𝑒, Θ𝑒 +  𝜆 Π𝑒

2

19



NLL ZINB

• For non-zero values
− log 1 − 𝜋 𝑁𝐵 𝑥; 𝜇, 𝜃
= 𝑙𝑜𝑔Γ 𝑥 + 1 + 𝜃 + 𝑥 log 𝜃 + 𝜇 − 𝑥𝑙𝑜𝑔𝜇 −  𝜃𝑙𝑜𝑔𝜃 + 𝑙𝑜𝑔Γ 𝜃
− 𝑙𝑜𝑔Γ 𝑥 + 𝜃 − log(1 − 𝜋)

• For zero case

−𝑙𝑜𝑔 𝜋 + (1 − 𝜋)
𝜃

𝜃 + 𝜇

𝜃

• Add regularizing term with above value
𝜆 Π𝑒

2

20



Model Design

Requirement Considerations Design Choice

Training with mutations available 
in clinical sequencing reports

Sparse, high dimensional nature 
of mutations

Use VAEs, with zero inflated 
distributions to model sparsity 
and high dimensional data

Predict on drugs unseen during 
training

Include drug information as a 
model input

Morgan fingerprint (binary) to 
encode drug information

21



Model Design

Requirement Considerations Design Choice

Training with mutations available 
in clinical sequencing reports

Sparse, high dimensional nature 
of mutations

Use VAEs, with zero inflated 
distributions to model sparsity 
and high dimensional data

Predict on drugs unseen during 
training

Include drug information as a 
model input

Morgan fingerprint (binary) to 
encode drug information

Handle input space discrepancy Model shared characteristics 
common to cell lines and 
patients

Learn shared embedding by 
aligning domain representations, 
CORAL loss

22



CORAL loss

• Unsupervised domain adaptation loss
• Aligns source and target domains - minimizes covariance of input 

feature distributions
• Useful when distributions of domains are different

𝐿𝐶𝑂𝑅𝐴𝐿 = ||𝑐𝑜𝑣 𝑧𝑐 − 𝑐𝑜𝑣(𝑧𝑝)||

𝑐𝑜𝑣 𝑧 =
1
𝑛


𝑖=1

𝑛

(𝑧𝑖− ҧ𝑧𝑖)(𝑧𝑖− ҧ𝑧𝑖)′

23



Model Design

Requirement Considerations Design Choice

Training with mutations available 
in clinical sequencing reports

Sparse, high dimensional nature 
of mutations

Use VAEs, with zero inflated 
distributions to model sparsity 
and high dimensional data

Predict on drugs unseen during 
training

Include drug information as a 
model input

Morgan fingerprint (binary) to 
encode drug information

Handle input space discrepancy Model shared characteristics 
common to cell lines and 
patients

Learn shared embedding by 
aligning domain representations, 
CORAL loss

Handle output space 
discrepancy

Model differences in responses in 
both domains

Use multi-task learning to model 
the outputs – regression for cell 
lines and classification for 
patients.

Incorporate biological information available on each mutation
24



DruID: Pretraining

• Pretraining loss is a combination of reconstruction loss and 
alignment loss

𝐿𝑅𝑒 = 𝑁𝐿𝐿𝑍𝐼 𝑋𝑒; Π𝑒, Ω𝑒, Θ𝑒 +  𝜆 Π𝑒
2

𝐿𝐾𝐿𝐷𝑒 = −0.5 ∗  (1 + log 𝜎𝑒
2 − 𝜇𝑒

2 − 𝜎𝑒
2)

𝐿𝐶𝑂𝑅𝐴𝐿 = ||𝑐𝑜𝑣 𝑧𝑐 − 𝑐𝑜𝑣(𝑧𝑝)||

𝑐𝑜𝑣 𝑧 =
1
𝑛


𝑖=1

𝑛

(𝑧𝑖− ҧ𝑧𝑖)(𝑧𝑖− ҧ𝑧𝑖)′

𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 𝐿𝑅𝑐 + 𝐿𝐾𝐿𝐷𝑐 + 𝐿𝑅𝑝 + 𝐿𝐾𝐿𝐷𝑝 + 𝐿𝐶𝑂𝑅𝐴𝐿

25



DruID: MTL

• Training loss is a multi objective optimization of MSE and BCE logit 
loss

𝐿𝐵𝐶𝐸
= −[𝑦𝑅𝐸𝐶𝐼𝑆𝑇 log 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ത𝑦𝑅𝐸𝐶𝐼𝑆𝑇 + 1 − 𝑦𝑅𝐸𝐶𝐼𝑆𝑇 log(1
− 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ത𝑦𝑅𝐸𝐶𝐼𝑆𝑇 )]

𝐿𝑀𝑆𝐸 = (𝑦𝐴𝑈𝐷𝑅𝐶 − ത𝑦𝐴𝑈𝐷𝑅𝐶)2

𝐿𝑀𝑇𝐿 = max(𝜆𝑐𝐿𝑀𝑆𝐸, 𝜆𝑝𝐿𝐵𝐶𝐸)

26



Model Training

Stage 1: 
Pretraining VAEs

Stage 2:
Training the Multi-task 
learning (MTL) model

• Handles input 
discrepancy

• Training on 
mutation data

• Handles output 
space discrepancy

• Allows drug 
repurposing

27



Extraction of 
mutations from report

Clinical NGS 
report

DruID

Mutations

ABL1 G259G

ABL1 N96S

XRCC2 T194T

AKT1 E17K

Domain Invariant
Representation

Annotated Mutation Vector 
(7776 dimensions 

324 genes * 24 features)

Mutatio
n

GPD ClinVar Annovar 
based 
score

ABL1 
G259G

NCU VUS 0

ABL1 
N96S

PIU VUS 0.5

XRCC2 
T194T

PIU VUS 0

AKT1 
E17K

PIU VUS 1

.

.

.

…

(I) Variant Annotation (II) Unsupervised Domain-Invariant
Representation Learning

(III) Multi-Task Drug 
Response Prediction

Cancer Cell Line
Mutations

Drug Morgan fingerprint

0.8

Responde
r

Predicted AUDRC

Predicted 
RECIST Category

Cell line VAE

Patient VAE

AUDRC predictor

RECIST predictor

Drug 
embedderClinVar AnnoVarGPD

: Neural Network

28



Extract patient identifier and 
set of point mutations from 

report

For each point mutation, 
obtain genomic coordinates, 
HGVSc, Consequence using 

TransVar

Derive ClinVar annotations 
from the genomic coordinates 

using filter-based Annovar 
annotations

Derive dbNSFP categorical 
annotations from the genomic 
coordinates using filter-based 

Annovar annotations

Encode “Deleterious” as 1 
and “Tolerated” as 0 to obtain 

a 17-dimensional binary 
vector per point mutation

Group Clinical Significance 
returned into 3 – pathogenic, 

benign or variants of unknown 
significance(VUS)

Mutation Clinical 
Significanc
e

SIFT LRT … FATHMM Row-wise mean 
(d-score)

GPD Annotation

ABL1 G259G VUS 0 0 … 0 0 NCU

XRCC2 T194T Benign 0 0 … 0 0 NCU

AKT1 E17K Pathogenic 1 1 … 1 15/17 PIU

Obtain Ensembl ID for the 
gene associated with each 

point mutation

Use GPD to identify where 
each mutation lies – protein 
information unit (PIU), linker 

unit(LU) or non-coding 
unit(NCU)

ClinVar Annotation AnnoVar Annotation GPD Annotation

Point 
mutation

GPD 
annotation

ClinVar 
annotation

d-score

ABL1 G259G NCU VUS 0

ABL1 N96S PIU VUS 0.5

ABL1 P622L PIU VUS 0

ABL1 R483W PIU VUS 1

Gene ABL1

PIU mean 0.5

PIU sum 1.5

PIU max 1

PIU count 3

NCU mean 0

NCU sum 0

NCU max 0

NCU count 1

LU mean 0

LU sum 0

LU max 0

LU count 0

Gene ABL1

Pathogenic mean 0

Pathogenic sum 0

Pathogenic max 0

Pathogenic count 0

Benign mean 0

Benign sum 0

Benign max 0

Benign count 0

VUS mean 0.375

VUS sum 2.5

VUS max 1

VUS count 4

Gene level aggregation exampleVariant Annotation
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Mutation 1

ClinVar Annotation AnnoVar Annotation GPD Annotation

30

23-dimensional vector

Mutation N

23-dimensional vector

…

24-dimensional vector/gene

24-dimensional vector 24-dimensional vector 24-dimensional vector
Gene 1 Gene 2 Gene 324

…

7776-dimensional vector/patient

…



Cell Lines

Patients 

Cell line VAE

Alignment loss

Patient VAE

Cell line embedding

Patient embedding

Distribution of 
mutations before 

alignment

𝑋𝑐 ∈  ℝ𝑛𝑐× 𝑘

𝑋𝑃 ∈  ℝ𝑛𝑃× 𝑘

𝑄(𝑧𝐶|𝑋𝐶)

𝑧𝐶  ∈  ℝ𝑛𝐶 × 𝑢

𝑧𝑃  ∈  ℝ𝑛𝑃 × 𝑢

𝑄(𝑧𝑃|𝑋𝑃)

𝑃(𝑋𝐶|𝑧𝐶)

𝑃(𝑋𝑃|𝑧𝑃) Distribution of 
mutations after 

alignment

Stage I: Pretraining VAEs
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𝐸𝐷
Drug Morgan fingerprint

Drug embedding

concatenate

concatenate

AUDRC predictor MLP

RECIST predictor MLP

ത𝑦𝐴𝑈𝐷𝑅𝐶

Responder

Non-Responder

Area under dose response curve

RECIST category

Cell Lines

Cell line VAE Cell line embedding

𝑋𝑐 ∈  ℝ𝑛𝑐× 𝑘
𝑄(𝑧𝐶|𝑋𝐶)

𝑧𝐶⨁ 𝑧𝐷

Patients 

Patient VAE Patient embedding
𝑧𝑃  ∈  ℝ𝑛𝑃 × 𝑢

𝑄(𝑧𝑃|𝑋𝑃)
𝑋𝑃 ∈  ℝ𝑛𝑃× 𝑘

𝑋𝐷 ∈  {0, 1}𝑛𝑑× 𝑗

𝑧𝐷  ∈  ℝ𝑛𝐷 × 𝑢

𝑧𝐶  ∈  ℝ𝑛𝐶 × 𝑢

𝑧𝑃⨁ 𝑧𝐷

𝑓𝐶

𝑓𝑃

ത𝑦𝑅𝐸𝐶𝐼𝑆𝑇

Stage II: Training the MTL model
32



𝐸𝐷
Drug Morgan fingerprint

Drug embedding

concatenate

RECIST predictor MLP

Responder

Non-Responder

RECIST category

Model Inference

Patients 

Patient VAE Patient embedding
𝑧𝑃  ∈  ℝ𝑛𝑃 × 𝑢

𝑄(𝑧𝑃|𝑋𝑃)
𝑋𝑃 ∈  ℝ𝑛𝑃× 𝑘

𝑋𝐷 ∈  {0, 1}𝑛𝑑× 𝑗

𝑧𝐷  ∈  ℝ𝑛𝐷 × 𝑢

𝑧𝑃⨁ 𝑧𝐷
𝑓𝑃

ത𝑦𝑅𝐸𝐶𝐼𝑆𝑇

Variant Annotator
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Experiment: Data

• Cancer cell lines
• Mutation profiles: CCLE DepMap portal[1]

• AUDRC labels: GDSC portal[2]

• Patients
• Pan cancer TCGA patient mutation profiles and RECIST labels: TCGA GDC 

portal[3]

• Only 324 genes from FoundationOne CDx report retained for use

34

[1] https://depmap.org/portal/data_page/?tab=allData
[2] https://www.cancerrxgene.org/
[3] https://portal.gdc.cancer.gov/ 

https://depmap.org/portal/data_page/?tab=allData
https://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/


Experimental Settings

• Split cell line and patient data into train and test splits (80:20)
• Generate 3 different train-test splits
• TCGA test split – 90

• Train model on train splits of cell lines and patients
• Cell line – TCGA dataset: 689 cell line-drug pairs, 444 patient-drug pairs

• Evaluation using AUROC and AUPRC on test splits of patients 
(RECIST)

• Comparison of baselines against most recent work – CODE-AE, 
TUGDA, TCRP, Velodrome
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Results: Comparison against SOTA

DruID outperforms SOTA on mutation data
AUROC: 6.4% 
AUPRC: 1.1%

36



Additional experiments

• Performance comparison of mutation against gene expression (& 
other data types) data from genes in clinical sequencing panels

• Validation of DruID on real-world data from NUH, Singapore
• Comparison of DruID against SOTA on gene expression
• Ablation study
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Does the use of clinical NGS work as well as 
WES?

38

Subset1: 324 genes included in FoundationOne CDx.
Subset2: 285 genes common across FoundationOne CDx, TruSight Oncology 500 and Tempus xF+ cNGS panels. 

Subset3: 19,536 genes, nearly all those available from WES. 



DruID: Comparison of input types
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DruID: Comparison of input types
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Additional experiments

• Performance comparison of mutation against gene expression 
data from genes in clinical sequencing panels

• Validation of DruID on real-world data from NUH, Singapore
• Comparison of DruID against SOTA on gene expression
• Ablation study
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DruID: On real world datasets
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DruID: On real world datasets
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DruID: On real world datasets
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Additional experiments

• Performance comparison of mutation against gene expression 
data from genes in clinical sequencing panels

• Validation of DruID on real-world data from NUH, Singapore
• Comparison of DruID against SOTA on gene expression
• Ablation study
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DruID: Comparison against SOTA on gene 
expression
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Additional experiments

• Performance comparison of mutation against gene expression 
data from genes in clinical sequencing panels

• Validation of DruID on real-world data from NUH, Singapore
• Comparison of DruID against SOTA on gene expression
• Ablation study
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DruID: Ablation

48

• Addition of variant annotations improves performance
• Using zero inflated distributions help, but is not significant


